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The foundation of the Comprehensive Assessment of Nuclear Sustainment
(CANS) analysis was the aggressive use of Air Force Smart Operations for the
21st Century (AFSO21) tools to attack root causes. Though the effort was time
constrained and many of the processes were modified to streamline the
application, this did not detract from the effort, and actually enhanced the
team’s ability to use those portions of AFSO21 that made sense. Overall, the
CANS effort highlights the power, flexibility, applicability, and simplicity of the
AFSO21 toolkit and is a resounding success story.

Major Jennifer G. Walston, PhD, USAF

The Problem Is Big, Time Is Short,and Visibility Is Enormous

Introduction

When initially assigned to the Air
Force CANS project, I wondered
what role analysis would play in

the effort. Typically, analysts are brought into
projects after all the data has been collected
and it is time to analyze. Most often, this is
much too late for the analytic effort to have
the optimum impact on the problem and its
solutions. However, in this case, the CANS
chairman brought me on board at the very
beginning. This was a chance to shape the
effort and to ensure that a methodical and
repeatable analytic process was both followed
and documented.

Given this phenomenal opportunity and
the fact that I am an operations research
analyst by trade, not an AFSO21 expert, why
did I choose to use the tools of AFSO21? The
simple answer is that it just made sense. When
researching applicable industry methods for
root cause analysis and risk analysis, the
methods that I found most used by industry
were available in the AFSO21 Playbook.
Additionally, because the AFSO21 process
is tailorable, we were able to use an industry
accepted process and tools while still meeting
a very short schedule. The remainder of this
article reviews the methodology used in the
CANS project.
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Figure 1. The DMAIC 5-Step Problem Solving Approach5

CANS Methodology

The focus of the CANS methodology was to not only
investigate nuclear sustainment and develop solutions,
but also to ensure a clear linkage would exist amongst
the prioritized findings, root causes, and actionable
solutions for implementation.

A team of subject matter experts (SME) was selected,
divided into seven subteams, and subsequently
consolidated into five working teams as follows:

• Organizational structure and lines of authority and
responsibility

• Logistics and supply chain management
• Maintenance and storage
• Training and standardization
• Previous report review and research

In order to ensure that the CANS study produced
solutions that addressed the root causes of the problem
instead of only treating the symptoms, the team
followed a methodical, industry and Air Force accepted,
appropriately modified, 5-step problem solving
approach called Define, Measure, Analyze, Improve,
and Control (DMAIC)11 which worked as a framework,
encapsulating the overall solution methodology  (see
Figure 1). (Please note that at the time of this study, the
Air Force had not yet fully adopted the Toyota 8-step
problem solving model as the preferred model for
AFSO21. For more information, see the AFSO21 Web
site.)

Define
The first step of the DMAIC model is to define the
problem and develop an improvement project plan.

In this stage, the CANS team built subteam-level
charters, defined the scope, and established milestones
and roles. Additionally, based on the defined scope, the
team developed a comprehensive questionnaire for the
team to use during all site visits.

The overall problem was defined and scoped. From
the definition, using affinity diagramming, cause and
effect diagramming, and brainstorming,3, 4, 5, 10, 11, 12  the

team determined and stratified key mission elements, or
focus areas, contributing to the overall problem. These
key mission elements are noted as follows:

• Training. Activities addressing the level of
competence to execute the required job. They include
formal training, education, on-the-job training,
certifications, and experience.

• Policy. Activities that define how the Air Force does
business. They should be clear, concise, standard,
and relevant.

• Culture. Intangibles such as trust, support,
accountability, internal and external environment,
spirit, politics, pride, personal commitment,
perceptions, and tribe mentality.

• Resources. People, equipment, systems, facilities,
funding, and time.

• Oversight and Control. Activities that provide
feedback on Air Force processes. They include
performance measurements and metrics, inspections,
closed loop feedback processes, and corrective
actions.
Also during this step, the research subteam collected

and reviewed over 2,000 documents related to the Air
Force nuclear enterprise. From this group of documents,
the research team identified 67 key documents and
scrutinized previous findings as they related to the key
mission areas. It is important to note that the other
subteam members were not given access to the previous
documents so that the data collection in the site visits
would not be biased.

Measure
The second step of the DMAIC model is to measure
the existing process and identify the process capability
requirement.

The teams collected data through a variety of methods
during the measurement step. These methods include
the following:

• Site visits consisting of 23 members of the team
visiting 31 sites with nuclear capability or related
functions
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• Personal interviews during site visits, and followup
interviews as needed with SMEs

• Research included staff studies, reports, policy,
audits, and other sources

• A rapid improvement event addressing the
engineering technical support process

Analyze
The process is analyzed to determine its capability. Data
is analyzed to identify opportunities for improvement
and to develop plans for improving the process. The
steps in this phase include root cause analysis, solution
development, risk analysis and mitigation, and
determining the path forward.

Root Cause Analysis
Root cause analysis was conducted using proven
methods, accepted by both industry and the Air Force.
Specific methods used included flow diagramming
(value stream or process), affinity diagramming,
brainstorming, cause and effect diagramming, and the
Five Whys. 3, 4, 5, 10,11,12 Brief descriptions of these
methods follow.

• Flow Diagramming (Value Stream or Process
Mapping). Value stream mapping (VSM) is a tool to
visualize an entire process, such as the flow of
material and information as a product or service
makes its way through the value stream. It is a good
method for displaying relationships between material
and information, making waste and its sources visible,
setting a common language and basis for discussion,
and getting the big picture. Value stream mapping
differs from process mapping in that it is broader in
scope, tends to be at a higher level, and is typically
used to identify where future focus should occur. The
process map shows a process in more detail than a
VSM. Such information is useful in analyzing all
aspects of a specific process. VSM was used by the
engineering team to map out the technical order 00-
25-107 maintenance assistance engineering process.
Process mapping was used by the engineering team
to map out the information flow of the time change
technical order process. The CANS team did not
perform a full VSM on the entire Air Force nuclear
sustainment enterprise due to time constraints.
However, the team did use the tool to visualize the
highest-level processes of the entire enterprise in order
to scope the problem and to view the entire enterprise
as one overall process. This was helpful as it
highlighted the seams to organizations outside of the

Air Force and was especially useful in integrating
process solutions to non-Air Force processes.

• Affinity Diagramming. Affinity diagramming,
sometimes called the JK Method for its creator Jiro
Kawakito, is useful for organizing and presenting
large amounts of data (ideas, issues, solutions,
problems) into logical categories based on user
perceived relationships and conceptual frameworks.
When paired with brainstorming, affinity diagrams
can help organize data and ideas, group like items,
sort a large number of brainstorming ideas quickly,
build consensus, avoid long discussions, stop people
from dominating discussions, stimulate independent
thoughts, and enable a greater variety of ideas. The
CANS team used affinity diagramming when
determining the five key mission areas.

• Brainstorming. Brainstorming is a problem solving
technique in which team members attempt a
deductive methodology for identifying possible
causes of any problem via free-form, fast-paced idea
generation. Brainstorming was popularized by Alex
Osborn (advertising executive) in the 1930s, and can
be an effective means to develop many ideas in a
short amount of time. Brainstorming was used
throughout the CANS study.

• Cause-Ef fec t  Diagramming  (F i shbone
Diagramming). Cause-effect diagramming, also
called fishbone or Ishikawa diagramming, was
created by Kaoru Ishikawa in the 1960s as part of
the quality movement at Kawasaki Shipyards. It is a
visual tool used to logically organize possible causes
for a specific problem or effect by graphically
displaying them in increasing detail. Additionally, it
helps to identify root causes and ensures common
understanding of the causes. In this method, a
problem statement is written in a box on the right side
of the diagram and then possible causes are
determined (usually via brainstorming) as categories
branching off the problem statement. Benefits include
conciseness, adding structure to brainstorming, easily
trained and understood, works well in team
environment, and the ability to determine and analyze
countermeasures. This method was used in
determining the five key mission areas and during
root cause analysis.

• The Five Whys. For root cause analysis, the team
used the Five Whys, a well accepted method, first
developed by Sakichi Toyoda of Toyota, described
by Taiichi Ohno as “… the basis of Toyota’s
scientific approach,” and is now widely used across
industry and within AFSO21. The Five Whys
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1 Not Likely 1% - 20% 
2 Low Likelihood 21% - 40% 
3 Likely 41% - 60% 
4 Highly Likely 61% - 80% 
5 Near Certainty 81% - 99% 

Table 1. Consequence Likelihood Ratings13

typically refers to the practice of asking, five times,
why the failure has occurred in order to get to the root
cause or causes of the problem. There can be more
than one cause to a problem as well. In an
organizational context, generally root cause analysis
is carried out by a team of persons related to the
problem. No special technique is required.

Using these tools, the hundreds of tactical findings
discovered during data collection were analyzed to
determine common trends or higher-level issues, which
the team chose to call strategic level findings. These
findings were then analyzed to determine the root
causes. Finally, solutions were developed and then
further scrutinized via a murder board process to ensure
they truly solved the root causes instead of merely
symptoms of the real problem.

Risk Analysis
Risk analysis2,14 and mitigation was performed on each
solution using a modified version of the Develop and
Sustain Warfighting Systems (D&SWS) Core Process
Working Group13 Active Risk Management (ARM)
Process model. Because of the high visibility and
importance associated with the correction of the
enterprise, the risks of not implementing the solutions
were assumed to be known and sufficiently high such
that all solutions would be implemented. Thus, the risk
analysis in this study focused on the risks associated with
implementing the solutions.

These risks were identified and analyzed as follows.
The teams identified potential risks to solutions via
brainstorming with SMEs by indentifying and explicitly
defining potential unintended consequences which
might occur when the solutions are implemented. These
consequences were then scored by the SMEs, via a
Delphi voting method, using life cycle risk management
likelihood and severity ratings as defined in the
D&SWS ARM Process model and shown in Tables 1
and 2. (Note that the CANS team focused on
performance impact as the most critical characteristic.
Each proposed solution was reviewed on the basis of
consequence, vice cost or time to implement.)

Notional risk analysis output is shown in Figure 2,
where the green squares identify a safe area where there

is little likelihood of a risk occurring and low impact to
the system if it does. Similarly, the yellow and red
squares identify medium and high risk areas,
respectively. The line is calculated by measuring the full
range of the yellow area (medium impact) and
determining the 98 percentile point. The team
determined that the +98 percentile data points (within
the medium area), could have very easily been scored
within the red area (high impact) relative to the error
margins within the scoring process and should be treated
as high risk. Thus, solutions with risks above and to the
right of this line required additional review by the teams
to determine risk mitigation strategies.

Prioritization via Multi-Objective
Optimization

To determine a prioritized order, the strategic level
findings were scored on their impact, if solved, on the
five key mission areas. The result was then modeled as
a multi-objective optimization problem in which five
key mission areas represent the competing objectives
and the prioritized order of the strategic findings
represents the decision variable. In this type of problem,
there often exists no single criterion for choosing the best
solution. In fact, even the notion of best can be unclear
when multiple objectives are present; and in many cases,
it can be shown that improvement to one objective
actually degrades the performance of another.1

The multi-objective optimization problem,

            min F(x)

subject to

             x � ��{0,1)n : g
i 
(x) < 0,  i = 1,2,..., M}

where F:{0,1}”   RJ, is that of finding a solution
x n �  �  that  opt imizes  the set  of  object ives
F = (F

1
, F

2
, ..., F

J
) in the sense that no other point

y � � yields a better function value in all the objectives.15

(Note the precise mathematical definition of xn can be
found in Ehrgott8) The point x is said to be non-
dominated, efficient, or optimal in the Pareto sense.9

The (typically infinite) set of all such points is referred
to as the Pareto optimal set or simply the Pareto set.
The image of the Pareto set is referred to as the Pareto
Frontier or Pareto Front. If the Pareto set (or
corresponding Pareto front) results from a solution
algorithm and is not exact, it is referred to as the
approximate  (or experimental) Pareto set or
approximate (or experimental) Pareto front, respectively.
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 DoD Guide Proposed Air Force Definition 

1

 

Minimal or no consequence to technical 
performance 

Minimal consequence to technical 
performance but no overall impact to 
the program success. A successful 
outcome is not dependent on this issue; 
the technical performance goals will still 
be met. 

2 

Minor reduction in technical 
performance or supportability, can be 
tolerated with little or no impact on 
program 

Minor reduction in technical 
performance or supportability, can be 
tolerated with little impact on program 
success. Technical performance will be 
below the goal, but within acceptable 
limits. 

3 
Moderate reduction in technical 
performance or supportability with 
limited impact on program objectives. 

Moderate shortfall in technical 
performance or supportability with 
limited impact on program success. 
Technical performance will be below the 
goal, but approaching unacceptable 
limits. 

4 

Significant degradation in technical 
performance or major shortfall in 
supportability; may jeopardize program 
success. 

Significant degradation in technical 
performance or major shortfall in 
supportability with a moderate impact 
on program success. Technical 
performance is unacceptably below the 
goal. 

5 

Severe degradation in technical 
performance; cannot meet KPP or key 
technical/supportability threshold; will 
jeopardize program success 

Severe degradation in 
technical/supportability threshold 
performance; will jeopardize program 
success. 

Table 2. Risks

Figure 2. Notional Risk Analysis Output

Once defined, a multi-
objective optimization
problem can be solved via
m a n y  m e t h o d s .  T h e
particular method selected
can depend on many factors
including, but not limited
to, the c o m p l e x i t y  o f
t h e  problem, the time
a l lowed  fo r  p rob l em
solution, the availability
a n d  q u a l i t y  o f
i n f o r m a t i o n ,  a n d
t h e  p r e f e r e n c e s  o f
t h e  decisionmaker. In this
case, an a priori scalar
method called weighted-
sum-of-the-objec t ive-
func t ions  (WSOTOF)
was selected. As the name
implies, this m e t h o d
combines  t he  various
objectives via a convex
combination (a weighted
sum). Though it is among
the simplest of the multi-
objective methods, it is
guaranteed to produce an
efficient solution (see
L e m m a  3 . 3 . 1 1  i n
Walston19). It should be
noted that this method is not
guaranteed to find all
p o s s i b l e  s o l u t i o n s ,
p a r t i c u l a r l y  i f  t h e
corresponding Pareto front
i s  non -convex ; 6,7 ,16 ,17

however, in this particular
case ,  t he  benef i t s  o f
simplicity and speed far
outweigh potential risks
associated with examining
only a portion of the Pareto
front.

T o  c o m b i n e  t h e
objectives, the WSOTOF
m e t h o d  r e q u i r e s  a
predetermined set of
weights. In many cases, this
can be problematic18 as it is
dependent on subjective judgment of the decisionmaker
which may not be available or fixed across the duration
of the study. Thus, this step is of particular importance.
Additionally, in this particular problem, the

determination of weights is even more complex as there
are multiple decisionmakers to be considered.

To ensure that multiple decisionmaker preferences
are included and considered in the solution, the
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 N Minimum Maximum Mean 
Standard 
Deviation 

Variance 

Training 31 5 40 22.16 7.267 52.806 
Policy 31 10 50 21.77 8.995 80.914 
Culture 31 5 35 16.06 8.668 75.129 
Resources 31 5 40 22.52 8.282 68.591 
Oversight/Control 31 5 30 17.48 5.591 31.258 
Valid N (listwise) 31      

Table 3. Descriptive Statistics

Figure 3. Histogram of Weights Assigned to Culture

following method was used. First, a group of senior Air
Force leaders was identified as stakeholders for the
nuclear sustainment enterprise and defined as the
decisionmakers for the multi-objective problem. After
each stakeholder provided a set of weights, the problem
was solved as follows:

• A simple average of the weights provided by the
stakeholders was used as the weights for the problem.
However, there was considerable variance in the
weighting schemes provided by the stakeholders (see
Figure 3 and Table 3) indicating that further
investigation was necessary. The distribution of the
weights was tested for normality using normal p-p
plots and the Kolmogorov-Smirnov (K-S) goodness
test for normality. The plots and the K-S test indicate
failing to reject the null hypothesis that the weights
are normally distributed. Though in this case,
parametric statistics would then be applicable, the use

of a simple mean may not be adequate because of the
high degree of variance.

• The weights were further analyzed as follows. A
sensitivity analysis was conducted to determine the
impact of the weighting scheme on the overall
prioritized solution. It was found that the top priority
issues in the prioritization solution were relatively
impervious to the weighting scheme. A prioritized list
of findings was determined for each decisionmaker’s
preference of weights and was then examined against
the others. In this case, it was also found that the top
priority issues did not vary much over the various
weighting schemes. The average of the ranks
assigned from each weighting scheme was
determined for each finding, and was used to assign
its final rank.

Once the objectives have been  combined ,  any
applicable optimization
method can be used to
determine the prioritized list
of findings. In this case,
because no constraining
information was identified,
and impact to the overall
problem statement was the
sole criteria for selection, a
simple greedy heuristic
method was used. Simply
stated, once the weights are
determined, the value of
solving each particular
finding becomes clear, and
the prioritized list follows
directly.

Cost Analysis

The  CANS cos t  t eam
estimated costs for solutions
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that required funding. Cost analyst support upfront was
critical to providing leadership with vital financial
information. As solutions were identified, the cost team
worked to define tasks, time lines, and associated costs.
Identifying and linking costs with solutions allows
leadership to make timely, informed decisions with
known costs. In this case, costs of the CANS solutions
totalled $25.6M for fiscal year 2008—the process
worked and our leadership provided the funding to fix
the problems because the methodology was solid.

Improve. During the Improve step, the plan that was
developed in the Analyze phase is implemented. The
results of the change are evaluated and conclusions are
drawn as to its effectiveness. This can lead to
documenting changes and updating new instructions
and procedures.

The CANS chairman was given authority to
immediately implement some solutions. There were six
just-do-it solutions. The remaining results of this team’s
efforts were presented to senior leaders in a number of
briefings at the major commands and Air Staff.

Control. Control plans were developed to ensure the
process is institutionalized and continues to be measured
and evaluated. This can include implementing process
audit plans, data collection plans, and plans of action
for out-of-control conditions, if they occur.

This study team worked concurrently with SAF/IG
(Secretary of the Air Force, Inspector General’s office)
and AF/A9 (Studies and Analyses, Assessments, and
Lessons Learned Directorate) to develop inspection and
assessment criteria and plans to assess the status of the
Air Force nuclear sustainment enterprise and measure
the progress of addressing the CANS findings.

Conclusion

The foundation of the CANS analysis was the
aggressive use of AFSO21 tools to attack root causes.
Though the effort was time constrained and many of
the processes were modified to streamline the
application, this did not detract from the effort, and
actually enhanced the team’s ability to use those portions
of AFSO21 that made sense. Overall, the CANS effort
highlights the power, flexibility, applicability, and
simplicity of the AFSO21 toolkit and is a resounding
success story.
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